Bayesian estimation via adaptive MCMC (RAM or ARWMH).
Usage
caviar(
y,
q_alpha = 0.05,
model = 5,
nsim = 1e+05,
n_chains = 1,
method = "ram",
burn_in = 0.5,
theta_seed = NULL
)Arguments
- y
Numeric vector of returns
- q_alpha
Quantile level (default 0.05)
- model
Integer 1-5: SAV, AS, GARCH, Adaptive, T-CAViaR (default 5)
- nsim
MCMC iterations (default 1e5)
- n_chains
Number of sequential chains (default 1)
- method
"ram" or "amcmc" (default "ram")
- burn_in
Fraction in (0,1) (default 0.5)
- theta_seed
Starting values (default NULL)
Details
VaR estimates are negative for lower quantiles following standard financial convention where VaR represents potential loss.
The MCMC sampler includes bounds checking. Parameters leading to non-finite log-likelihoods are automatically rejected. GARCH variance estimates falling outside valid ranges reset to the empirical quantile.
References
Engle & Manganelli (2004) JBES 22(4):367-381 Vihola (2012) Stat Comput 22(5):997-1008 Atchadé & Rosenthal (2005) Bernoulli 11(5):815-828
Examples
# \donttest{
data(gerlach)
fit <- caviar(gerlach[, "USD"], nsim = 1000)
#>
|
| | 0%
|
|======================================================================| 100%
# }