
Forecasting quantiles of cryptocurrency returns
using MCMC algorithms

Mémoire

Carlos Alberto Chaparro Sepulveda

Sous la direction de:

Richard Luger, directeur de recherche

Résumé

Une version interactive du présent document est disponible à l’adresse

https://cacsfre.gitlab.io/msc.

Ce travail résume les étapes et les technologies nécessaires pour construire une application

web dynamique permettant de faire l’analyse de données financières en temps réel à l’aide des

langages de programmation R et C++. R est utilisé pour la collecte et traitement des données

entrantes ainsi que pour générer tout output. C++ est utilisé pour accélérer les simulations

Monte-Carlo. L’output de ce travail consiste en l’application web elle-même et les fonctions

permettant d’estimer les paramètres des modèles de régression quantile de la famille CAViaR.

Le code pour reproduire ce travail est organisé de la façon suivante :

� Un paquetage R pour l’application shiny, disponible à l’adresse

https://gitlab.com/cacsfre/simulr.

� Un paquetage R pour estimer les paramètres des modèles de la famille CAViaR, disponible

à l’adresse https://gitlab.com/cacsfre/caviarma.

� Le code R pour générer le présent document avec bookdown, disponible à l’adresse

https://gitlab.com/cacsfre/msc.

La famille de modèles CAViaR a été utilisée pour obtenir une estimation du quantile qα au

niveau α. Ces modèles s’adressent directement au quantile d’intérêt au lieu de le calculer

indirectement comme dans d’autres cas, par exemple les modèles de type GARCH où l’on

s’intéresse plutôt à la volatilité σ2. Les résultats obtenus ici sont comparables à ceux se

trouvant dans la littérature tel qu’illustré dans les chapitres 3 et 4.

ii

Abstract

An interactive version of this document is available at

https://cacsfre.gitlab.io/msc.

This work summarizes the steps and technologies required to build a dynamic web application

for the analysis of real time financial data using the R and C++ programming languages. R

is used to collect and process the input data as well as to generate all output. C++ is used

to speed up the Monte Carlo simulations. The output from this work consists of the web

application itself and the functions used to estimate the parameters of the CAViaR family of

quantile regression models. The code to reproduce this work is organized as follows :

� An R package with the shiny web application, available at

https://gitlab.com/cacsfre/simulr.

� An R package to estimate the parameters of the CAViaR family of models, available at

https://gitlab.com/cacsfre/caviarma.

� The R code used to generate this document with bookdown, available at

https://gitlab.com/cacsfre/msc.

The CAViaR family of models has been used to find an estimate of quantile qα at level α.

These models target the quantiles of interest directly instead of using indirect calculations as

it is the case with other popular models, such as GARCH-like models where the variable of

interest is the volatility σ2 instead of a specific quantile. The results obtained here are close

to those in the literature as shown in chapters 3 and 4.

iii

Contents

Résumé ii

Abstract iii

Contents iv

List of Tables v

List of Figures vi

Introduction 1

1 Cryptocurrencies 3
1.1 Bitcoin . 4
1.2 Blockchain . 5
1.3 Proof of work . 6
1.4 Market value . 11

2 Forecasting Methods 13
2.1 Quantile Models . 13
2.2 Maximum Likelihood Estimation . 18
2.3 Markov Chain Monte Carlo . 20
2.4 Adaptive MCMC Algorithms . 25

3 Simulation Study 28
3.1 Data generating process . 28
3.2 Sample MCMC path . 29
3.3 Convergence and mixing speed . 31
3.4 Simulation results . 31
3.5 Time complexity . 34

4 Application 38
4.1 Data . 38
4.2 Web app . 44

Conclusion 49

Bibliography 50

iv

List of Tables

1.1 A sample blockchain with 3 blocks . 9
1.2 Time (in milliseconds) required to mine increasingly difficult chains 9
1.3 The probability of success drops exponentially with z. 11

2.1 Parametric vs. empirical quantiles. 16

3.1 Means of a sample MCMC path of size 1e+05 vs. the true parameter vector. . 31
3.2 Statistics of 100000 MCMC draws of size 30 = 0.01 32
3.3 Statistics of 100000 MCMC draws of size 30 = 0.05 32
3.4 Sample timing of different MCMC implementations (in seconds). 35
3.5 Timing of the RAM algorithm, single thread vs. parallel version (in seconds). . 36

4.1 The input data structure. 39
4.2 Summary of the BTC/USD spot prices. 41
4.3 Closing price quantiles, BTC/USD spot. 41
4.4 DQ Test statistic for different CAViaR models (GAS package). 44

v

List of Figures

1.1 Gold, Silver (futures) and Bitcoin (spot) prices vs. VIX. 4
1.2 Traditional vs. new privacy model. 5
1.3 A block and a chain of blocks using Bitcoin’s data types. 6
1.4 Time vs. difficulty, 4 blocks. 10
1.5 Attacker’s success drops exponentially with the number of blocks 12

2.1 Historical returns (BTCUSD), prices from Yahoo! finance. 14
2.2 Fat tailed returns (BTCUSD), prices from Yahoo! Finance. 14
2.3 Parametric vs. empirical quantiles (BTC/USD). 16
2.4 Maximum likelihood estimation of the parameter vector. 19
2.5 Local and global minima of a sample three-dimensional function. 20
2.6 MCMC algorithm . 22

3.1 Returns from simulated T-GARCH-t set up following Gerlach (2011). 29
3.2 Last 1/10 of a sample MCMC path vs. the true (known) parameters. 30
3.3 Convergence of the AMCMC algorithm - 6 paths starting from random points. 32
3.4 Coda MCMC plot (AMCMC). 33
3.5 Convergence of the RAM algorithm - 6 paths starting from random points. . . 34
3.6 Coda MCMC plot (RAM). 35
3.7 Mixing of the AMCMC algorithm - 6 paths starting from the true values. . . . 36
3.8 Mixing of the RAM algorithm - 6 paths starting from the true values. 37

4.1 Spot and futures prices of the BTC/USD currency pair. 41
4.2 Histogram of BTC/USD price quantiles. 42
4.3 Histogram of BTC/USD spot prices overlaying futures prices. 43
4.4 Log-returns for the BTC/USD pair, prices (close) from Yahoo! Finance. 44
4.5 VaR (0.05) forecasts using different models. 45
4.6 Relationship between user input, server output and reactive values. 47
4.7 Outline of the shinyproxy architecture. 48
4.8 Outline of the open-source shiny-server architecture. 48

vi

Introduction

Cryptocurrencies are digital currencies traded through privately owned exchanges. Retail and

institutional investors are increasingly interested in this new asset class given its price growth

in recent years as well as a means of portfolio diversification and risk management. Bitcoin

(Nakamoto, 2008) plays a leading role in cryptocurrency exchanges and its price movements

have an impact across the whole market despite the existence of multiple competing cryp-

tocurrencies (Kyriazis, 2019). When adding a cryptocurrency such as Bitcoin to a portfolio,

we need to be aware of its risk level. An important market risk metric of an investment Y is

its Value at Risk at level α or VaRYα as defined in equation (2.1). This metric represents what

portion of a given investment is at risk given a probability level α ∈ (0,1). VaR forecasting

can be done using non-parametric, parametric or semi-parametric statistical models.

Ardia et al. (2019b) found an improvement over the benchmark GARCH(1,1) model for one

day ahead VaR forecasting using a Markov–switching GARCH specification, implemented in

the R MSGARCH package (Ardia et al., 2020) while Wang et al. (2019) used a multivariate

extension of the original CAViaR model (Engle and Manganelli, 2004) by White et al. (2015)

to study the spillover effect from external markets and found that Bitcoin exhibits safe-

haven like characteristics making it a good candidate for portfolio diversification. However,

Bitcoins’ high volatility makes it a high-risk investment which has important implications

from a risk management perspective for any financial institution interested in being exposed

to this asset class. For instance, capital requirements as per the Basel accords are higher for

cryptocurrencies (Stavroyiannis, 2018).

The first chapter will introduce the mechanics of the blockchain technology upon which Bit-

coin’s value is built both from a technological and a from historical perspective. Next, we

present the statistical models and methods used to obtain a forecast for VaRt+1 based on the

information set It. The last two chapters include a summary of the results obtained using

different Markov Chain Monte Carlo (MCMC) estimation methods and applying those meth-

ods to a simulated dataset as well as real time data. These results have been summarized in

the Simulation Study and Application chapters.

Different R packages are used for the Simulation study and Applications sections. These pack-

ages are text files containing source code written by their respective authors using mainly the

1

R (R Core Team, 2020) and C++ (Stroustrup, 2013) programming languages. All source code

used to produce this document is freely available online at https://cran.r-project.org/,

the source code of the caviarma package (Chaparro Sepulveda, 2019) and simulr package

(Chaparro Sepulveda, 2021) is available at https://gitlab.com/cacsfre. An interactive

web version of this document can be found at https://cacsfre.gitlab.io/msc while its

source code can be downloaded from https://gitlab.com/cacsfre/msc.

2

Chapter 1

Cryptocurrencies

Societies dating back to the ancient Greeks archaic period (750 – 500 BC) have used metals

such as silver and gold (Migeotte and Lloyd, 2009) to build coins, which are then used either

to store or to exchange value. 1 Gold and silver are not money by nature, but money’s

nature requires something like gold and silver (Marx, 1890) because of their intrinsic value

as rare metals (their Substatzwert) as well as for their ability to be mint and other potential

industrial uses (their Gebrauchswert). 2 Gold is considered a safe-haven asset in modern

financial markets (Baur and McDermott, 2010) since it is expected to keep or increase its

value in volatile markets. Figure 1.1 shows the normalized prices 3 of the following assets

since 2020-01-02:

� Gold GC=F (USD).

� Silver SI=F (USD).

� CBOE Volatility Index ^VIX (USD).

� USD CAD=X (CAD).

� JPY JPYCAD=X (CAD).

� Bitcoin BTC-CAD (CAD).

In this chapter we introduce the main building piece behind Bitcoin’s success: the blockchain

and its proof-of-work consensus mechanism which represents the computer labour required

to produce a Bitcoin, its digital Substanzwert. The usefulness of a Bitcoin from a trading

perspective, its Gebrauchswert, depends exclusively on its acceptance as a payment method

in exchange for digital and physical goods and services. This acceptance has been growing

since Bitcoin’s inception as evidenced by:

1There are also several industrial applications for these metals.
2Storing value in bullions vs. coins mint for day-to-day transactions.
3Each price series starts from 1.

3

Jan 2020 Jul 2020 Jan 2021 Jul 2021
0

2

4

6

8

Gold Futures Silver futures USD to CAD
JPY to CAD BTC to CAD VIX Index

Normalized prices starting at 1

Pr
ic
e

Figure 1.1: Gold, Silver (futures) and Bitcoin (spot) prices vs. VIX.

� its growing popularity in countries facing rapid inflation and currency restrictions

(Bloomberg (2017) and Bloomberg (2021a)).

� its growing acceptance as a means of payment in electronic transactions (Bloomberg

(2021c), PayPal (2021) and Bloomberg (2020-10-21)).

Cryptocurrencies constitute a largely unregulated asset class aiming to compete with tradi-

tional currencies and metals such as gold and silver as both a digital reserve currency and a

safe-haven asset. Because of this, the most challenging risk faced by cryptocurrencies such as

Bitcoin come from regulation, which could potentially render illegal holding or trading such

crypto-assets. There exists evidence of such behaviour from world powers dating back to the

Greek archaic period (Migeotte and Lloyd, 2009) whose political and economic power is linked

to the use of their currency to settle transactions and to collect taxes. On the other hand,

growing investors’ concerns about the environmental impact of cryptocurrency mining hard-

ware are opening the door for new and more sustainable blockchain-based cryptocurrencies.

1.1 Bitcoin

The Bitcoin cryptocurrency was introduced by Nakamoto (2008) as a mechanism to make

electronic payments between two parties without the need of a trusted third party. A trans-

action between two parties using Bitcoin takes place in the same way as a typical physical

transaction involving cash, i.e., a good or service is exchanged for a predetermined amount of

coins and the transaction is non-reversible since the parties identities are never required: the

4

Bitcoin Privacy Model

Traditional Privacy Model

Transactions PublicIdentities

PublicIdentities Transactions Trusted
Third Party Counterparty

Figure 1.2: Traditional vs. new privacy model.

value is stored in the coins. Since no intermediary is involved in a cryptocurrency transaction,

there is no central authority capable of modifying past records.

The need to reverse transactions arise from the inherent uncertainty of doing business over an

electronic communications channel since one of the parties can easily default on its obligations,

e.g., the delivery of a good or service. However, transaction costs increase with the need of a

dispute mediation mechanism and non-reversible electronic transactions are not possible since

a third party can potentially mediate disputes. Physical transactions using cash require the

buyer and seller to be present for the transaction to take place and no third party is involved:

cash transactions are also non-reversible. 4

The goal of the Bitcoin technology is to serve as cash for digital transactions, hence avoiding

the need of a third party while accepting the same condition one accepts when using cash,

i.e., that the exchange is non-reversible. When using a traditional coin or a Bitcoin, the coin

itself serves two purposes: storing and exchanging value. To attain this goal, a new privacy

model is proposed by Nakamoto (2008) as shown in Figure 1.2. This new model requires all

Bitcoin transactions to be public, which means that anybody can known its time and amount.

However, the transactions are not linked to any identities. This level of privacy is comparable

to a level II quote from a stock exchange, where volume and prices in the book are made

public, but not the identities of the investors.

1.2 Blockchain

A crucial piece of technology behind Bitcoin is its public distributed ledger: the Blockchain.

Bitcoin transactions data is first timestamped and digitally signed, then written into a block.

This blocks of transaction records are linked to each other through a unique Hash obtained us-

ing SHA-256 and creating a chronologically ordered chain of transaction records or blockchain.

This public ledger includes the history of all transactions since the beginning of (Bitcoin)

4A cash transaction does not require the identities to be disclosed.

5

Block t

Block t + 1

Previous Hash Nonce Unix Time

Block Version Merkle Root nBits

Block Hash Previous Hash
(uint256)

Nonce
(int32_t)

Unix Time
(int32_t)

Block Version
(int32_t)

Merkle Root
(uint256)

nBits
(int32_t)

Block Hash
(uint256)

Figure 1.3: A block and a chain of blocks using Bitcoin’s data types.

time and is equivalent to a bank’s private ledger, where a bank would keep track of cur-

rency ownership. Now, imagine that the banks ledger itself, let’s say an Excel spreadsheet,

is the currency itself. In that hypothetical case, the Excel file would be equivalent to the

blockchain: a database keeping track of money ownership and movements. Also, if one were

to create such an Excel-based blockchain, the file sheets or tabs representing the individ-

ual blocks should be chronologically ordered, with several transactions per sheet as well as

the corresponding cryptographic nonce (number once), previous hash and current hash as

shown in Figure 1.3 as per the current Bitcoin specification. The source code is available at

https://github.com/bitcoin/bitcoin/blob/master/src/primitives/block.h.

Each transaction is timestamped and digitally signed by the two parties and once a block has

been created a process called Mining begins during which the hash must be computed taking

as input the data from the block. The input data is hashed using a Merkle Tree (Merkle,

1980) and only the root of the tree is used when computing the block hash to save disk space.

The blockchain serves hence two purposes: it is the technology where transactions take place

and it is its own database. Creating a new block, a process called Mining, requires finding a

hash of all the data contained in the block while satisfying additional constraints. This mining

step can take minutes to hours depending on the size of the block and the central processing

unit (CPU) power available to find the hash. This computing work requires electricity and

CPU to find a hash, which is then fed into the next block. Modifying the original data in any

previous block requires redoing the work to find a new hash for that block and for any future

blocks. Network nodes will by design always consider the longest chain to be the true chain

and will keep working to find future hashes, which means that the Bitcoin system is designed

to always follow the chain requiring the greatest computing power to be produced.

1.3 Proof of work

From a security perspective, the system is vulnerable by design to an attacker capable of

controlling more than half of the available CPU in the network since the attacker could build

a parallel longer chain that would eventually be followed by the honest nodes as shown in

6

https://en.wikipedia.org/wiki/Cryptographic_nonce
https://developer.bitcoin.org/reference/block_chain.html

Figure 1.5. The underlying logic to tolerate this risk is explained by Nakamoto (2008) as

follows: someone capable of controlling more than half of the network’s computing resources

must decide whether to use their resources to maintain or to destroy their own wealth. It is

important to mention that other cryptocurrencies and blockchain technologies use alternatives

to the proof-of-work consensus algorithm such as Ethereum’s proof-of-stake system (Buterin,

2013), where the weight of a node is proportional to its currency holdings instead of its

computing power.

The proof-of-work system works by restricting the hash of the block to a fixed number of

leading zeros which requires some time to be found since it must be randomly guessed. The

time that it takes to find a valid block hash depends on the block’s difficulty, which is controlled

through the nBits target number. The SHA-256 hash of an empty string "" obtained with

the openssl package (Ooms, 2021) is:

openssl::sha256(paste0(data="", block="", nonce=""))

[1] "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"

which would not be a valid Bitcoin block hash since its leading characters are not zeros.

However, the hash corresponding to "1134816" is

openssl::sha256(paste0(data="", block="1", nonce="134816"))

[1] "000001f8479faf79c1a58152ffc6b027a93f6ae6b27dc19ef986b2c9e7cad3b3"

Which has 5 leading zeros. A current Bitcoin’s hash needs 19 leading zeros to be considered

valid and accepted by the network. The average median confirmation time from 2020-04-06

to 2021-04-04 was 12.01 minutes.

Since it takes time or computer work to find a valid block hash, the longer chain is the one

which needed the most CPU power to be produced, i.e., to find valid block hashes. The R

loop below shows a simple example of the type of work necessary to find a block hash:

difficulty <- 5

max_nonce <- 1e6

for(i in 1:max_nonce) {

hash_i <- openssl::sha256(paste0(block_data="", block_number=1, nonce=i))

if(substr(hash_i, 1, difficulty) == strrep(0, difficulty)) {

break

7

https://www.blockchain.com/btc/blocks?page=1
https://www.blockchain.com/charts/median-confirmation-time

}

}

hash_i

Since every block includes the hash of the previous block as shown in Figure 1.3, modifying

any data in a past block of the chain will render the remaining blocks invalid and a new

mining process will be required to fix all the hashes that have been invalidated by the data

tampering. This means that unless an attacker is capable of producing a longer chain faster

than all honest nodes in the system by controlling more than half of the system’s computing

power, the network is capable of ensuring its own data integrity.

To link two blocks, we need to add an additional prev_block_hash data field to our previous

example:

a_block <- paste0(

prev_block_hash = character(),

block_data = character(), # Merkle root hash

block_number = integer(),

nonce = integer()

)

And then mine the block to find its hash. Once a block hash has been found, it becomes the

input to the next block. The example below creates a blockchain with three blocks containing

nothing but an empty string as block_data field. The first block’s hash is deliberately left

empty in this example.

n_blocks <- 3

max_nonce <- 1e6

difficulty <- 2

block_chain <- list("")

for(block_i in 2:(n_blocks)) {

this_block <- paste0(

prev_block_hash = block_chain[[block_i - 1]],

block_data = "",

block_number = block_i,

nonce = 0

)

for(i in 1:max_nonce) {

hash_i <- openssl::sha256(

8

Table 1.1: A sample blockchain with 3 blocks

Hash

Block 1

Block 2 00328ce57bbc14b33bd6695bc8eb32cdf2fb5f3a7d89ec14a42825e15d39df60

Block 3 00d7b5192f725a525822b57f5563514d0c4d4ff9bc4fb0ce84347b31f6fa577a

Table 1.2: Time (in milliseconds) required to mine increasingly difficult chains

expr min median max

One Block, Level 1 496 535 2222

One Block, Level 2 3864 4001 5465

One Block, Level 3 51475 54744 77432

Two Blocks, Level 1 714 823 1018

Two Blocks, Level 2 5702 6978 9866

Two Blocks, Level 3 548195 584731 633797

Four Blocks, Level 1 2284 2410 2952

Four Blocks, Level 2 12716 15566 19171

Four Blocks, Level 3 1176702 1382572 1524348

paste0(

prev_block_hash = block_chain[[block_i - 1]],

block_data = "",

block_number = block_i,

nonce = i

)

)

if(substr(hash_i, 1, difficulty) == strrep(0, difficulty)) {

break

}

}

block_chain[[block_i]] <- hash_i

}

names(block_chain) <- paste0("block_", 1:n_blocks)

Table 1.2 shows benchmark times obtained using the microbenchmkark package (Mersmann,

2019) while mining blockchains of increasing difficulty (Level) and length (Blocks). We can

see in Figure 1.4 that the time needed to mine 4 blocks increases exponentially with the

difficulty, which is controlled with the number of leading zeros required by the hash to be

considered valid.

We can also calculate the probability of successfully compromising the network as a function

9

Four Blocks, Level 1 Four Blocks, Level 3

5
5

0
5

0
0

5
0

0
0

Chain of 4 blocks

Difficulty

L
o

g
(t

im
e

)

Figure 1.4: Time vs. difficulty, 4 blocks.

of an attacker’s probability of finding the next block in the chain vs. an honest node finding

it. We can compute the probability qz that an attacker will catch up from z blocks behind

following Nakamoto (2008) as follows:

qz = 1−
z∑

k=0

λke−λ

k!

{
1−

(
q

p

)(z−k)
}

(1.1)

Where,

p = probability an honest node finds the next block.

q = probability the attacker finds the next block.

qz = probability the attacker will ever catch up from z blocks behind.

Which can be translated into the following R code: 5

attacker_success_probability <- function(q_prob, z_blocks) {

p_prob <- 1 - q_prob

lambda <- z_blocks * (q_prob / p_prob)

sum_prob <- 1

for(k in 0:z_blocks) {

5This is nothing but an R version of the original C code in the paper by Nakamoto (2008).

10

Table 1.3: The probability of success drops exponentially with z.

q = 0.05 q = 0.1 q = 0.2 q = 0.35

0 1.00e+00 1.00e+00 1.00e+00 1.000000

5 2.87e-05 9.14e-04 2.74e-02 0.336365

10 1.25e-09 1.24e-06 1.07e-03 0.142805

15 5.60e-14 1.74e-09 4.29e-05 0.062454

20 -5.16e-17 2.46e-12 1.74e-06 0.027659

25 9.26e-17 3.30e-15 7.13e-08 0.012334

30 9.12e-17 -8.69e-17 2.93e-09 0.005524

35 -1.02e-17 2.24e-17 1.21e-10 0.002481

40 3.85e-17 -4.84e-17 4.97e-12 0.001117

45 -7.36e-17 -6.46e-17 2.05e-13 0.000504

50 2.66e-17 -4.30e-17 8.60e-15 0.000227

poisson_prob <- exp(-lambda)

i <- 1

while(i <= k) {

poisson_prob <- poisson_prob * lambda / i

i <- i + 1

}

sum_prob <- sum_prob - poisson_prob * (1 - (q_prob / p_prob)^(z_blocks - k))

}

return(sum_prob)

}

The setup used in Figure 1.4 corresponds to z_blocks = 4, and the attacker’s success prob-

ability can be found through Equation (1.1) as summarized in Table 1.3 .

1.4 Market value

In this section we have introduced the mechanics behind the Blockchain technology without

mentioning prices nor quantiles so far. Several applications based on the Blockchain technol-

ogy are currently in development/production (Bloomberg, 2021d) as evidence of Blockchain’s

technological or intrinsic value. However they do not necessarily have a relationship with

Bitcoin nor with its price. Therefore, we might wonder whether there is any value in a

cryptocurrency at all.

Linking computer resources to a token (the cryptocurrency) through a proof-of-work algorithm

consumes electricity, which is mainly produced from coal and gas with only 28% of global

consumption coming from renewable sources (Agency, 2020). Growing investors’ concerns

11

0 20 40

0

0.2

0.4

0.6

0.8

1 q = 0
q = 0.05
q = 0.1
q = 0.15
q = 0.2
q = 0.25
q = 0.3
q = 0.35
q = 0.4
q = 0.45
q = 0.5

Attacker's success probability vs. # of blocks behind

of Blocks

Pr
ob

ab
ili

ty

Figure 1.5: Attacker’s success drops exponentially with the number of blocks

about the environmental impact of Bitcoin mining is one of the reasons behind alternative

mining algorithms since a financial transaction’s environmental impact is directly linked to the

computing power required to process such transactions through the network. As a consequence

of such innovations and with over 6000 cryptocurrencies available worldwide (Statista, 2021),

investors’ capital allocation to this new asset class is increasingly diversifying out of the

original Blockchain implementation, i.e., Bitcoin.

We commonly use an asset’s closing price as a proxy of the asset’s (market) value, and Bit-

coin’s market price remains far from zero since its inception despite the legal and technological

challenges (Bloomberg, 2021b). The goal of the following section is to test different MCMC

methods and VaR models to forecast quantiles of the distribution of returns of a cryptocur-

rency such as Bitcoin. For this, we will apply standard econometric methods to a vector of

cryptocurrency returns as we aim to get a forecast of VaR, which represents a quantile of the

distribution of financial returns.

12

Chapter 2

Forecasting Methods

2.1 Quantile Models

When forecasting quantiles of a random variable Y , we must pay close attention to the

assumptions behind the models being used. For instance, a standard Value at Risk (VaR)

model used to estimate a quantile qα at level α relies on the assumption of stationary and

normally distributed asset returns, which tends to underestimate the probability of large

losses. This can be especially problematic for volatile cryptocurrency returns which exhibit

both volatility clustering and fat tails as evidenced in Figures 2.1 and 2.2. 1 In this chapter

we present some statistical models and estimation methods that can be used to estimate

VaRYα , which we will often denote as VaRα for simplicity. In the following section, we will

compare the results obtained using common VaR forecasting models such as GARCH models

to those obtained using quantile regression models of the CAViaR family proposed by Engle

and Manganelli (2004). Here y = (y1, y2, . . . , yt) denotes a numeric vector of log-returns and

we follow these definitions following Ruppert and Matteson (2011):

VaR(α) = inf{x : Pr (L > x) ≤ α} (2.1)

and,

ES(α) =

∫ α
0 VaR(u)du

α
(2.2)

where L in Equation (2.1) is the loss over a period T and VaR(α) denotes the Value at Risk

quantile at level α or VaRα. This value corresponds to a quantile of the return vector y.

Equation (2.2) defines the expected shortfall or average loss in case yt exceeds VaRα. We now

discuss different methods used for forecasting qα.
1We could also use histograms and quantile-quantile plots to better visualize this discrepancy.

13

2019 2020 2021

−
50

−
30

−
10

0
10

20

BTC/USD Spot returns

Date

R
et

ur
n

(%
)

Figure 2.1: Historical returns (BTCUSD), prices from Yahoo! finance.

Empirical density of returns vs. Normal vs. Student−t distribution

y

D
en

si
ty

−50 −40 −30 −20 −10 0 10 20

0.
00

0.
05

0.
10

0.
15 Normal
Student−t

Figure 2.2: Fat tailed returns (BTCUSD), prices from Yahoo! Finance.

14

Using Equation (2.1) and values for α ∈ (0, 1), we can compare the different values obtained

for q̂α using a normal and a Student-t distribution vs. the empirical quantiles as explained

next.

Nonparametric

The first way we will try to get an estimate of VaRα is by using the empirical quantile function

q̂(α), which can be easily obtained with the R quantile function. Non parametric methods

do not require assumptions about the distribution of Y . The following two expressions are

used to compute the Value at Risk and expected shortfall in this case:

V̂aR(α) = −q̂(α) (2.3)

ÊS(α) = −
∑T

t=1 yt · I{yt < q̂(α)}∑T
t=1 I{yt < q̂(α)}

(2.4)

Parametric

The standard parametric technique makes use of the normal distribution. Based on a sample

vector of size T we model y as a random variable following a normal distribution of fixed

mean µ and variance σ2, e.g., Y ∼ N(µ, σ2). Since Y
iid∼ N(µ, σ2), we compute the quantile

qα using the well known expression:

V̂aR(α) = µ̂+ σ̂ × Φ−1(α) (2.5)

where Pr(Y ≤ qα) = α and Φ−1(α) is the inverse of the cumulative distribution function (c.d.f)

of a standard normal distribution. To obtain Φ−1(α), we can use the qnorm R function, whose

first parameter is the probability α. Table 2.1 and Figure 2.3 show the quantiles estimated for

values of α ∈ {0.01, 0.02, . . . , 0.99} using two standard parametric methods vs. the empirical

quantiles. In the case of the normal distribution, the unbiased estimators below are commonly

used since the Maximum Likelihood (MLE) estimator of σ2 does converge to the unbiased

estimator when T → ∞.

µ̂ =
1

T

T∑
t=1

yt (2.6)

σ̂2 =
1

T − 1

T∑
t=1

(yt − µ̂)2 (2.7)

15

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

Empirical vs. parametric quantiles

Cumulative probability

Q
ua

nt
ile

 (
%

)

Empirical
Normal
Student−t

Figure 2.3: Parametric vs. empirical quantiles (BTC/USD).

Table 2.1: Parametric vs. empirical quantiles.

1% 5% 10%

Empirical -11.03 -5.89 -3.87

Student -11.80 -5.68 -3.80

Normal -9.33 -6.51 -5.01

where µ in Equation (2.6) is frequently assumed to be 0 for high frequency financial applica-

tions. The expected shortfall ESα(Y) is defined as

ESα(Y) =
1

α

∫ α

0
VaRγ(Y)dγ, (2.8)

which translates into the following closed-form expression in the case of a normal distribution:

ÊS(α) = −µ̂+ σ̂
ϕ(Φ−1(α))

α
(2.9)

where ϕ(x) in Equation (2.9) is the probability density function (p.d.f) of a standard normal

distribution. As evidenced in Figure 2.1, periods of extreme returns are clustered and exhibit

autocorrelation, e.g., extreme negative returns are more likely to happen during highly volatile

periods. The generalized autoregressive conditional heteroskedastity (GARCH) model intro-

duced by Bollerslev (1986) tackles this problem with the GARCH(p,q) model shown below:

16

Yt ∼ N(0, σ2t) (2.10)

σ2t = ω +

p∑
i=1

αiy
2
t−1 +

q∑
j=1

βjσ
2
t−1 (2.11)

k-step ahead forecast

σ2t (k) =

ω̂ + (α̂1ŷ
2
t + β̂1)σ̂

2
t k = 1

ω̂ + (α̂1 + β̂1)σ̂
2
t (k − 1) k > 1

(2.12)

The popular GARCH(1,1) model in Equation (2.13) below describes the variance σ2t using

three pararameters only since p = q = 1.

σ2t = ω + αy2t−1 + βσ2t−1 (2.13)

In this case our parameter vector is θ = (ω, α, β) = (θ1,θ2,θ3).The well-known RiskMetrics

model (Morgan and Reuters, 1996) is a specific case of Equation (2.13) where ω = 0, α =

(1− λ) and β = λ:

σ2t = (1− λ)y2t−1 + λσ2t−1. (2.14)

Semiparametric

The CAViaR model (Engle and Manganelli, 2004) describes the behaviour of a quantile qα at

level α ∈ {0, . . . , 1} as an autoregressive process taking one of the following forms :

� Adaptive:

ft(θ) = ft−1(θ1) + θ1

(
1

1 + ek·(yt−1+ft−1(θ1))
− α

)
(2.15)

� Symmetric absolute value:

ft(θ) = θ1 + θ2ft−1(θ) + θ3|yt−1| (2.16)

� Asymmetric slope:

ft(θ) = θ1 + θ2ft−1(θ) + θ3|yt−1|I(yt−1>0) + θ4|yt−1|I(yt−1<0) (2.17)

� Indirect GARCH(1,1):

ft(θ) =
[
θ1 + θ2f

2
t−1(θ) + θ3y

2
t−1

]1/2
(2.18)

17

� Threshold CAViaR (Gerlach et al., 2011):

ft(θ) =

θ1 + θ2ft−1(θ) + θ3|yt−1|, yt−1 ≤ 0

θ4 + θ5ft−1(θ) + θ6|yt−1|, yt−1 > 0
(2.19)

where Gerlach et al. (2011) proposed a generalized form for the CAViaR model through

Equation (2.19). The threshold variable yt−1 in the Threshold CAViaR (T-CAViaR) model

above could also be an exogenous variable, while the threshold value could be ̸= 0. It is

important to emphasize that ft(θ) returns the quantile of interest at level α in contrast to

the standard GARCH model in Equation (2.11) which models σ2t . This direct modelling of

VaRα at time t can be expressed as follows:

VaRt = ft(θ|It−1) + ϵt (2.20)

Regardless of the specifics of each model, we also need to find a way to get an estimate θ̂. In the

following sections, we present the general optimization and Monte Carlo methods we tested

for estimating the CAViaR model based on a vector of observed returns y = (y1, y2, . . . , yt=T).

2.2 Maximum Likelihood Estimation

The likelihood L(θ) function of a model is defined as

L(θ) =

T∏
t=1

fθ(yt), (2.21)

where y = (y1, y2, . . . , yt=T) represents the observed data vector. To find a maximum likeli-

hood estimation (MLE) of θ, we need to find a vector θ ∈ Θ which maximizes L(θ) 2 given

y. For this, we use the following objective function at quantile level α:

f(θ, α,y) =
1

T

T∑
t=1

(
α− I(yt<ft(θ))

)
(yt − ft(θ)) (2.22)

Function (2.22) is the Regression Quantile Criterion proposed by Engle and Manganelli

(2004). When using adaptive MCMC methods, the likelihood function is slightly modified as

2In practice, the natural logarithm of the likelihood function is used for easier computation and better
floating point precision.

18

f(y | θ)

MLE

y

^θ

Figure 2.4: Maximum likelihood estimation of the parameter vector.

shown by Gerlach et al. (2011) under the assumption that the error term in Equation (2.20)

follows a Skewed-Laplace (SL) distribution (Yu and Moyeed, 2001). In order to estimate the

parameters of the CAViaR model, the natural logarithm of Equation (2.21) must be given as

objective function to an optimizer and the values of θ which maximize the log-likelihood is

our estimate θ̂.

The performance of this method depends on the complexity of the target distribution. Mul-

tiple mathematical assumptions on the shape of the likelihood function are needed by most

numerical optimization methods whose validity depend on the asymptotic behaviour of the

estimators, see Dorsey and Mayer (1995) for a summary of such difficulties.

Starting values

When looking for the global maximum of a likelihood function, we must pick a starting

point θ1 ∈ Θ. The optimizer will then apply some sort of algorithm (Nelder-Mead, genetic,

simulated annealing, etc.) and stop when one of the following happens: the maximum number

of iterations has been reached, an error caused by the shape of the function has occurred or

the algorithm has converged.

Given the non-linearity of the CAViaR model, there are good chances that any optimizer will

get stuck at a local maximum. To handle this, it is common practice to create a grid in Θ

and run the numerical procedure several times from each point in the grid. After doing this,

we end up with as many local maxima as points in the grid. The global maximum is then

identified from this set as shown in Figure 2.5.

Optimization algorithms

In finding the maximum likelihood estimator of the CAViaR family of models, we tested the

following algorithms: 3

3The pso::psoptim() and GA::ga() algorithms require minimum input, but may take longer to converge.

19

0

5

10

f(x1,x2)

The global minimum

Local minimum 1

Local minimum 2

Starting point 1

Starting point 2

Figure 2.5: Local and global minima of a sample three-dimensional function.

� Quasi-Newton (variable metric algorithm) as implemented by the stats::optim() func-

tion.

� One-dimensional optimization by Brent (1973) for Equation (2.15) as implemented by

stats::optim().

� Genetic algorithm as implemented by the GA package (Scrucca, 2021) through the

GA::ga() function.

� Particle swarm optimization by Clerc (2010) as implemented in the pso package (Bendt-

sen., 2012) through the pso::psoptim() function.

2.3 Markov Chain Monte Carlo

In contrast to the frequentist (or classical) MLE method, MCMC algorithms are Bayesian

methods which allow us to get a sample of θ. It is this sample that will be used to draw

probabilistic conclusions about θ instead of asymptotic results as it is the case with the

MLE method. The Bayesian estimation method requires the use of the following expression

(Ruppert and Matteson, 2011):

π(θ|y) = π(θ)f(y|θ)
f(y)

=
π(θ)f(y|θ)∫

Θ π(θ)f(y|θ)dθ
∝ π(θ)f(y|θ) (2.23)

where π (θ|y) is called the posterior density, a function returning the distribution of θ con-

20

ditional on the observed data y. Here π (θ) is the prior density, which represents our prior

beliefs about the parameter vector θ. In the MCMC implementations below uninformative

priors, following a uniform distribution, were used. The functions f(y) and f(y|θ) are the

marginal and conditional densities respectively.

Equation (2.23) is an important tool in Bayesian statistics as it tells us how to update the

prior probabilities after observing the data, this relationship is sometimes referred to as:

Posterior ∝ Prior× Likelihood (2.24)

where ∝ means proportionality up to a constant, i.e., 1/
∫
π(θ)f(y|θ)dθ in Equation (2.23).

Using Equation (2.23) and a vector of log-returns y, we obtain a Markov chain θN×d with

each column representing a variable θi, ∀i ∈ {1, . . . , d} and each row an iteration. This chain

is the output sample of interest used for creating posterior intervals.

Before we go any deeper into the MCMC algorithm, we might wonder why using MCMC

methods instead of classical frequentist methods. An important difference between frequentist

and Bayesian methods is that the former consider the parameter vector θ as fixed (within a

random interval) while the latter treat it as a random variable (Efron, 1986). An important

reason for choosing to work with Markov chains comes from the minimal requirements on

the target distribution f (Robert and Casella, 2009). The properties of this sequence {θ(t)}
make their use possible in Bayesian analysis since they enjoy a strong stability property and

a stationary distribution f exists by construction such that:

θ(t) ∼ f, then θ(t+1) ∼ f (2.25)

The stationarity property due to the existence of f imposes a constraint of irreducibility on the

transition kernel K(θ(t),θ(t+1)), which means that the function K must allow the sequence

to visit every region of the state-space Θ. An important computational property of such

Markov chains is called ergodicity, which means that the limiting distribution of θ(t) will be f

regardless of the algorithm’s initial value θ(0), meaning that simulating a long enough chain

θ(t) from K with stationary distribution f will produce simulations from f which can be used

to draw probabilistic conclusions about θ.

The Markov Chain Monte Carlo (MCMC) methods allow us to get a sample of θ from a target

distribution using a Markov chain. When using this method, we obtain a sample of θ based

on a batch of size NN with chains of length N . Instead of finding a vector which maximizes

Equation (2.21), this method outputs multiple sample chains which are then used to obtain

an estimate θ̂. The general algorithm is as follows:

21

f(θ | y)

MCMC

y

^θ

Figure 2.6: MCMC algorithm

Algorithm:

Step 1: Pick the length of the chain N and the number of batches NN

Step 2: Obtain a sample matrix θ1:N

Step 3: Set θ1 = θ̄1:N

Step 4: Repeat Step 1 to Step 3 NN times

Step 5: Set θ̂ = θ̄1:NN

where θ̄1:N denotes the mean values of the columns of θ1:N . The MCMC algorithms we used

to estimate the CAViaR family of models fall in a general classification of the MCMCmethods:

the Metropolis–Hastings algorithm (Metropolis and Ulam, 1949). Under this category, the

following implementations are tested:

1. Adaptive random walk Metropolis-Hastins with Gaussian proposal following Atchadé

and Rosenthal (2005) and Chen and So (2006).

2. Adaptive random walk Metropolis–Hastings with student-t proposal during burn-in and

independent kernel for sampling (Gerlach et al., 2011).

3. Robust adaptive Metropolis (Vihola, 2012).

For the first two implementations, a Metropolis within Gibbs strategy is used during adapta-

tion following Roberts and Rosenthal (2009). In the following algorithms, we will use x and y

to denote the current point in the chain θ(t) and the proposal Yt following Robert and Casella

(2009).

Standard Metropolis-Hastings

Algorithm 4 (Robert and Casella, 2009)

Step 1: Generate Yt ∼ q
(
y|θ(t)

)
.

Step 2: Set

22

θ(t+1) =

Yt with probability ρ
(
θ(t), Yt

)
θ(t) with probability 1− ρ

(
θ(t), Yt

) (2.26)

where

ρ(x,y) = min
{
f(y)

f(x)

q(x|y)
q(y|x)

, 1

}
(2.27)

Below we show the equivalent lines of C++ code from our implementation in the caviarma

package:

q_x = 1.0;

q_y = 1.0;

for (int i = burn_in; i < nsim; i++) { // Sampling

x.row(i) = x.row(i-1);

Y = arma::mvnrnd(burn_in_mu, burn_in_sigma, 1);

f_x = BetaPosterior(x.row(i).t());

f_y = BetaPosterior(Y);

prob = exp(f_y + q_x - f_x - q_y);

rho = std::min(1.0, prob);

if (arma::randu() < rho) {

x.row(i) = Y.t();

sampling_counter++;

}

} // End of Sampling

Where x.row(i) is the i-th row of an arma::mat object (Sanderson and Curtin, 2016) which

stores the value of θ(t). The output obtained by running the generic MCMC algorithm above

is a θN×d matrix. This implementation happens to be a special case of the more generic algo-

rithm 4 since the proposal q is a multivariate centrally symmetric (around zero) distribution,

i.e., q(θ − 0) = q(0 − θ). We call this symmetric function g, examples of which are the stan-

dard multivariate normal and standard student-t distributions (Serfling, 2014). This property

implies that q(x|y)/q(y|x) = 1 in Equation (2.26). Since the proposed values for θ(t+1) in the

above code are independent of θ(t), this is an independent Random Walk Metropolis-Hastings

algorithm:

23

Independent Random Walk Metropolis

Algorithm 6 (Robert and Casella, 2009)

Step 1: Generate Yt ∼ g (y).

Step 2: Set

θ(t+1) =


Yt with probability min

{
f(y)
f(x) , 1

}
θ(t) with probability 1− min

{
f(y)
f(x) , 1

}
Posterior Intervals

We now turn our attention to the output matrix θN×d and define the following scalar valued

functions ψ = ψ(θ) (Ruppert and Matteson, 2011):

ψ̄ =
1

N

∑
ψi sψ =

[
1

N − 1

∑(
ψi − ψ̄

)2]1/2
(2.28)

where ψi = ψi(θi), ∀i ∈ {1, . . . , N}. The statistics defined in Equation (2.28) are the MCMC

sample mean ψi, also called the posterior expectation E(ψ|y), and the Bayesian standard

error sψ. The ergodic theorem (Robert and Casella, 2009) allow us to create the following

interval for θ:

ψ̄ ± zα/2sψ (2.29)

Convergence

The convergence of the Markov chain is guaranteed when following the standard versions

of the Metropolis-Hastings algorithm. However, serious mathematical issues arise when the

posterior distribution (2.23) is not properly defined, i.e., when the following condition is not

respected (Robert, 2007):

∫
Θ
π(θ)f(y|θ)dθ <∞ (2.30)

As a consequence, the posterior distribution is not integrable and the chains cannot converge.

To avoid this issue and since the use of improper priors is behind the improper posteriors,

24

we choose to work with uninformative priors following an integrable uniform distribution.

Autocorrelation plots are a popular tool for visually verifying the convergence of a particular

sample. For this, we use the coda::acfplot function from the coda package. However,

Equation (2.30) must always hold true for the algorithm to be of any use in inference.

2.4 Adaptive MCMC Algorithms

Adaptive MCMC algorithms are used to speed up convergence and improve mixing of the

Markov chains. At each step of the simulation, a decision will be made concerning the

parameters of the proposal function q(x, y). For instance, increasing the variance σ2 of a

normal proposal would result in larger steps being taken when going from θ(t) → θ(t+1). The

adaptation step uses the chain’s acceptance rate to decide whether a larger or a smaller step

must be taken, i.e., the value of σt+1 in Equation (2.4).

Adaptive RW-Metropolis

A standard case of the adaptive MCMC family is the adaptive Random Walk Metropolis

Hastings algorithm with proposal density q(x, y) = N(x, σ2Id).

Algorithm (Atchadé and Rosenthal, 2005)

Step 1: Generate Yt ∼ N
(
θ(t), σ2t I

)
.

Step 2: Set

θ(t+1) =


Yt with probability min

{
f(y)
f(x) , 1

}
θ(t) with probability 1− min

{
f(y)
f(x) , 1

}

Step 3: Compute

σt+1 : ϵ1 ≤ σt + γt(ρ(θ
(t), Yt)− τ̄) ≤ A1 (2.31)

Where 0 < ϵ1 < A1, ρ(x,y) = min{f(y)/f(x), 1}, (γt) is a positive sequence of real numbers

and τ̄ is the acceptance rate in stationarity. The source code implementing this algorithm

can be found in the caviarma::AMCMC() function, where the lower_bound and upper_bound

variables correspond to ϵ1 and A1 in Equation (2.31), i.e., the limits of σt. Note that either

a Normal or a Student-t distribution can be used for the proposal since both are centrally

symmetric functions.

25

Robust Adaptive Metropolis

This was the best performing algorithm for estimating the CAViaR model, both in terms of

speed and precision. The Robust Adaptive Metropolis (RAM) algorithm avoids the use of

the empirical covariance matrix of θN×d, which avoids problems caused by target functions

without finite second moment.

RAM Algorithm (Vihola, 2012)

Step 1: Compute Yt = θ(t−1) + St−1Ut, where U
iid∼ q.

Step 2: Set

θ(t+1) =


Yt with probability min

{
f(Yt)

f(θ(t−1))
, 1

}
θ(t) with probability 1− min

{
f(Yt)

f(θ(t−1))
, 1

}

Step 3: Compute the St matrix satisfying:

StS
T
t = St−1

(
I + ηt(ρ(θ

(t−1), Yt)− α⋆)
UtU

T
t

∥Ut∥2

)
STt−1 (2.32)

Where I ∈ Rd×d is the identity matrix, q is a spherically symmetric proposal density, St ∈
Rd×d is a lower-diagonal matrix, {ηt}t≥1 ⊂ (0,1] is a sequence decaying to zero and α⋆ is the

target acceptance rate of the algorithm, i.e., 0.234 for d = 6 (Gelman et al., 1997).

The following C++ implementation is nothing but a translation of the R implementation avail-

able through the adaptMCCM package (Scheidegger, 2021). Here we chose to drop any outlier

parameter vector which might eventually arise due to memory overflow in the Step 3 of the

RAM algorithm. In the implementation below, it is important to note that M always exists

since it is the Cholesky decomposition of the right-hand side of Equation (2.32), verified to

be symmetric and positive definite in Proposition 1 of Vihola (2012).

for (int i = 1; i < nsim; i++) { // Sampling

U = rt(theta_d, nu);

Y = x.row(i - 1).t() + (S * U);

p_val_prop = test_mode ? arma_p_log(Y): armaBetaPosterior(Y);

double prob = exp(p_val_prop - p_val(i - 1));

double alpha = std::min(1.0, prob);

26

https://en.wikipedia.org/wiki/Cholesky_decomposition

if (!std::isfinite(alpha)) alpha = 0;

if (arma::randu() < alpha) {

x.row(i) = Y.t(); // Accept

p_val(i) = p_val_prop;

k++;

} else {

x.row(i) = x.row(i - 1);

p_val(i) = p_val(i - 1);

}

ii = i + n_start;

if (ii < n_adapt) {

adapt_rate = std::min(1.0, theta_d * std::pow(ii, -gamma));

M = S * (I_mat + adapt_rate * (alpha - acc_rate) * U * U.t() /

arma::accu(arma::pow(U, 2))) * S.t();

eig_val = arma::eig_gen(M);

tol = M.n_cols * arma::max(arma::abs(eig_val)) * double_eps;

if (!M.is_sympd() || !arma::imag(eig_val).is_zero() ||

!arma::all(arma::real(eig_val) > tol)) {

// Shouldn't happen as per Equation (1) in Vihola (2012)

// If this happens due to memory overflow the vector is dropped in R

}

S = arma::chol(M).t();

}

} // End of Sampling

Automatically Tuned Adaptive Metropolis

The last adaptive MCMC algorithm that will be tested was introduced by Yang and Rosenthal

(2017) and is available through the atmcmc package (Yang, 2014). It works by first using a

Metropolis within Gibbs strategy (Roberts and Rosenthal, 2009) as with the C++ implementa-

tion of Equation (2.4) above, this first step is called the first adaptive phase. Once an optimal

one dimensional acceptance rate of 0.44 (Roberts and Rosenthal, 2009) has been reached by

θj , ∀j ∈ {1,2, . . . , d}, a new transient phase starts where a non-adaptive Metropolis within

Gibbs algorithm is used until the chain reaches the mode of the target distribution. For this,

a linear regression of the chain values is used. Once every coordinate θj becomes flat, which

has been diagnosed by the aforementioned linear regression, the second adaptive phase of the

algorithm begins during which the full proposal matrix Σp is updated. Finally, a last sampling

phase takes place using a conventional non-adaptive Metropolis algorithm.

27

Chapter 3

Simulation Study

We now move onto testing how good each MCMC algorithm works for estimating the param-

eters of the CAViaR family of models. For this, we will simulate a dataset and then apply

different algorithms to get an estimate θ̂, which we can compare to the known input vector θ.

3.1 Data generating process

The following T-GARCH-t set up (Gerlach et al., 2011) will be used to simulate a vector y of

returns :

Algorithm:

Step 1: Set σ1 and ν.

Step 2: Sample tν

Step 3: Set y1 = σ1tν

√
ν−2
ν

Step 4:

If yt ≤ 0

Compute σt = 0.2 + 0.03|yt−1|+ 0.95σt−1

Else

Compute σt = 0.05 + 0.15|yt−1|+ 0.75σt−1

Step 5: Sample tν

Step 6: Set yt = σttν

√
ν−2
ν

Step 7: Repeat Step 4 to Step 6

where y = (y1, y2, . . . , yt) is the simulated vector of interest shown in Figure 3.1. For this

setup, the true quantile at t+ 1 is given by qα(yt+1|β) = σt+1T
−1
ν (α)

√
ν−2
ν , while the known

(true) parameter vector of the T-CAViaR model (2.19) can be found with Equations (3.1) to

(3.6).

28

500 1000 1500 2000

−10

−5

0

5

T-CAViaR simulated returns (Student-t, 6 df)

Time (t)

R
et

ur
n

(%
)

Figure 3.1: Returns from simulated T-GARCH-t set up following Gerlach (2011).

θ1(α) = 0.2t−1
ν (α)

√
ν − 2

ν
(3.1)

θ2(α) = 0.95 (3.2)

θ3(α) = 0.03t−1
ν (α)

√
ν − 2

ν
(3.3)

θ4(α) = 0.05t−1
ν (α)

√
ν − 2

ν
(3.4)

θ5(α) = 0.75 (3.5)

θ6(α) = 0.15t−1
ν (α)

√
ν − 2

ν
(3.6)

3.2 Sample MCMC path

The sample paths below are the last iterations (10%) of different MCMC chains obtained

by using the following implementations of the MCMC methods discussed in the Forecasting

Methods chapter.

� amcmc : ARWMH, Atchade and Rosenthal (2005) - caviarma package.

� ram : RAM, Vihola (2012) - caviarma package.

29

0 2k 4k 6k 8k 10k

−1

0

1

2

3

 Chains θ 1 - amcmc

θ 1 - ram

θ 1 - amcmc2

θ 1 - ram2

θ 1 - atmcmc

θ 1 - True

θ 2 - amcmc

θ 2 - ram

θ 2 - amcmc2

θ 2 - ram2

θ 2 - atmcmc

θ 2 - True

θ 3 - amcmc

θ 3 - ram

θ 3 - amcmc2

θ 3 - ram2

θ 3 - atmcmc

θ 3 - True

θ 4 - amcmc

θ 4 - ram

θ 4 - amcmc2

θ 4 - ram2

θ 4 - atmcmc

θ 4 - True

θ 5 - amcmc

θ 5 - ram

θ 5 - amcmc2

θ 5 - ram2

θ 5 - atmcmc

θ 5 - True

θ 6 - amcmc

θ 6 - ram

θ 6 - amcmc2

θ 6 - ram2

θ 6 - atmcmc

θ 6 - True

θ

Figure 3.2: Last 1/10 of a sample MCMC path vs. the true (known) parameters.

� amcmc2 : ARWMH, Atchade and Rosenthal (2005) - fmcmc package.

� ram2 : RAM, Vihola (2012) - fmcmc package.

� atmcmc : ATMCMC, Jinyoung and Rosenthal (2014) - atmcmc package.

These methods were applied to estimate the parameters of the simulated T-CAViaR dataset.

Table 3.1 summarizes the performance of these MCMC algorithms when estimating the pa-

rameters of the T-CAViaR model.

The summary statistics of each MCMC chain, for each method, are shown in Table 3.1.

30

Table 3.1: Means of a sample MCMC path of size 1e+05 vs. the true parameter vector.

1 2 3 4 5 6

True Values -0.3173 0.9500 -0.0476 -0.0793 0.7500 -0.2380

amcmc -0.5092 0.8560 -0.0860 0.0919 0.8369 -0.1883

ram -0.3984 0.9281 -0.0578 0.0150 0.7995 -0.1789

amcmc2 0.5265 0.8467 0.1172 0.0106 0.7525 0.2678

ram2 0.5278 0.8480 0.1113 0.0044 0.7536 0.2723

atmcmc 0.5227 0.8538 0.1104 0.0275 0.7420 0.2703

3.3 Convergence and mixing speed

As we can see through Figure 3.2 and Table 3.1, the caviarma implementations (Cha-

parro Sepulveda, 2019) seems to converge closer to the true known values of θ. Figures

3.3 and 3.5 show the first iterations of these adaptive MCMC methods, i.e., amcmc and ram,

starting from a random point θ1. Figures 3.7 and 3.8 show the first iterations of the same

adaptive MCMC methods, but starting from the true values of θ to visualize its mixing speed.

An important question one must ask is whether the MCMC chains have converged to their

stationary distribution as per equation (2.25). For this, we will analyze the mcmc output

using the coda package (Plummer et al., 2020). We can also see in Figure 3.3 how the

AMCMC algorithm behaves during its adaptive phase. The equivalent information for the

RAM algorithm is available in Figure 3.5, while its coda output can be found in Figure 3.6.

3.4 Simulation results

The results below are obtained from a batch of 30 MCMC chains, each of length 100000, using

the RAM, Vihola (2012) method and the T-CAViaR model. Table 3.2 summarizes the results

for quantile level α = 0.01 and Table 3.3 does the same at level α = 0.05. These results show

that the standard deviation of the estimates increases with α as expected given that there is

more uncertainty (less data) about the location of the lowest/highest quantiles.

Where we test the θi(α) functions described by Gerlach et al. (2011) and we consistently found

estimates closer 1 to the true (known) values when compared to Table 1 of Gerlach et al.

(2011) even though we used a batch of size 30 instead of 400. We also found contradicting

signs for some estimates of Table 1 in the original paper by Engle and Manganelli (2004) when

estimating the same models through the RAM implementation by Vihola (2012).

1The authors reported θ̂5 = −0.734 even though the true value is θ5 = 0.75 with α = 0.05. We consistently
found a value for θ̂5 > 0 in our simulations using the same setup.

31

0 2k 4k 6k 8k 10k

−5

−4

−3

−2

−1

0

1

 Chains θ 1 - 1

θ 2 - 1

θ 3 - 1

θ 4 - 1

θ 5 - 1

θ 6 - 1

θ 1 - 2

θ 2 - 2

θ 3 - 2

θ 4 - 2

θ 5 - 2

θ 6 - 2

θ 1 - 3

θ 2 - 3

θ 3 - 3

θ 4 - 3

θ 5 - 3

θ 6 - 3

θ 1 - 4

θ 2 - 4

θ 3 - 4

θ 4 - 4

θ 5 - 4

θ 6 - 4

θ 1 - 5

θ 2 - 5

θ 3 - 5

θ 4 - 5

θ 5 - 5

θ 6 - 5

θ 1 - 6

θ 2 - 6

θ 3 - 6

θ 4 - 6

θ 5 - 6

θ 6 - 6

θ 1 - True

θ 2 - True

θ 3 - True

θ 4 - True

θ 5 - True

θ 6 - True

θ

Figure 3.3: Convergence of the AMCMC algorithm - 6 paths starting from random points.

Table 3.2: Statistics of 100000 MCMC draws of size 30 = 0.01 .

1 2 3 4 5 6

True Values -0.5132 0.9500 -0.0770 -0.1283 0.7500 -0.3849

RAM, Vihola (2012) -0.8317 0.8748 -0.3028 -0.4206 0.6715 -0.3280

Std. Deviation 0.2794 0.0777 0.1251 0.1272 0.0405 0.0862

Table 3.3: Statistics of 100000 MCMC draws of size 30 = 0.05 .

1 2 3 4 5 6

True Values -0.3173 0.9500 -0.0476 -0.0793 0.7500 -0.2380

RAM, Vihola (2012) -0.3441 0.9498 -0.0304 -0.0769 0.7627 -0.2089

Std. Deviation 0.1150 0.0479 0.0454 0.0551 0.0263 0.0319

32

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

7

Iterations

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2

0
3

N = 50001 Bandwidth = 0.007021

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

0.
75

Iterations

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0
6

N = 50001 Bandwidth = 0.004254

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

15

Iterations

−0.20 −0.15 −0.10 −0.05 0.00

0
15

N = 50001 Bandwidth = 0.002074

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

1

Iterations

−0.1 0.0 0.1 0.2

0
4

N = 50001 Bandwidth = 0.005066

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

0.
70

Iterations

0.70 0.75 0.80 0.85 0.90

0
8

N = 50001 Bandwidth = 0.002704

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

35

Iterations

−0.35 −0.30 −0.25 −0.20 −0.15 −0.10

0
8

N = 50001 Bandwidth = 0.002481

Figure 3.4: Coda MCMC plot (AMCMC).

33

0 2k 4k 6k 8k 10k
−8

−6

−4

−2

0

2

4

 Chains θ 1 - 1

θ 2 - 1

θ 3 - 1

θ 4 - 1

θ 5 - 1

θ 6 - 1

θ 1 - 2

θ 2 - 2

θ 3 - 2

θ 4 - 2

θ 5 - 2

θ 6 - 2

θ 1 - 3

θ 2 - 3

θ 3 - 3

θ 4 - 3

θ 5 - 3

θ 6 - 3

θ 1 - 4

θ 2 - 4

θ 3 - 4

θ 4 - 4

θ 5 - 4

θ 6 - 4

θ 1 - 5

θ 2 - 5

θ 3 - 5

θ 4 - 5

θ 5 - 5

θ 6 - 5

θ 1 - 6

θ 2 - 6

θ 3 - 6

θ 4 - 6

θ 5 - 6

θ 6 - 6

θ 1 - True

θ 2 - True

θ 3 - True

θ 4 - True

θ 5 - True

θ 6 - True

θ

Figure 3.5: Convergence of the RAM algorithm - 6 paths starting from random points.

3.5 Time complexity

We also tested how fast each algorithm performed when getting an estimate of the parame-

ter vector. Table 3.4 shows sample microbenchmark output for each method using an input

vector of length n equal to 2000. We see that the RAM algorithm is faster than the AM-

CMC algorithm depite both samplers running at O(d2) speed 2 during adaptation and O(n)

sampling speeds. 3

Where each function has been evaluated using a chain length of 3 × 104. Since the fastest

2d depends on the model and corresponds to the dimension of the parameter vector θ, which depends on
the model and is updated one by one on the Gibbs-like RWMH algorithm.

3An independent kernel single step update is used after adaptation.

34

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

8
Iterations

−0.8 −0.6 −0.4 −0.2

0
3

N = 50001 Bandwidth = 0.00717

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

0.
7

Iterations

0.7 0.8 0.9 1.0 1.1

0
6

N = 50001 Bandwidth = 0.004114

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

20

Iterations

−0.20 −0.15 −0.10 −0.05 0.00 0.05

0
8

N = 50001 Bandwidth = 0.002496

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

2

Iterations

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
4

N = 50001 Bandwidth = 0.005078

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

0.
65

Iterations

0.65 0.70 0.75 0.80 0.85 0.90

0
8

N = 50001 Bandwidth = 0.002761

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

−
0.

40

Iterations

−0.40 −0.30 −0.20 −0.10

0
8

N = 50001 Bandwidth = 0.003027

Figure 3.6: Coda MCMC plot (RAM).

Table 3.4: Sample timing of different MCMC implementations (in seconds).

Min Lq Mean Median Uq Max #eval

RAM (caviarma) 573 576 587 580 595 610 3

AMCMC (caviarma) 1846 1861 1879 1875 1895 1916 3

RAM (fmcmc) 7665 7705 7893 7746 8008 8270 3

AMCMC (fmcmc) 7061 7121 7165 7181 7218 7255 3

ATMCMC (atmcmc) 7081 7203 7557 7325 7795 8265 3

35

0 2k 4k 6k 8k 10k

−0.5

0

0.5

1

 Chains θ 1 - 1

θ 2 - 1

θ 3 - 1

θ 4 - 1

θ 5 - 1

θ 6 - 1

θ 1 - 2

θ 2 - 2

θ 3 - 2

θ 4 - 2

θ 5 - 2

θ 6 - 2

θ 1 - 3

θ 2 - 3

θ 3 - 3

θ 4 - 3

θ 5 - 3

θ 6 - 3

θ 1 - 4

θ 2 - 4

θ 3 - 4

θ 4 - 4

θ 5 - 4

θ 6 - 4

θ 1 - 5

θ 2 - 5

θ 3 - 5

θ 4 - 5

θ 5 - 5

θ 6 - 5

θ 1 - 6

θ 2 - 6

θ 3 - 6

θ 4 - 6

θ 5 - 6

θ 6 - 6

θ 1 - True

θ 2 - True

θ 3 - True

θ 4 - True

θ 5 - True

θ 6 - True

θ

Figure 3.7: Mixing of the AMCMC algorithm - 6 paths starting from the true values.

Table 3.5: Timing of the RAM algorithm, single thread vs. parallel version (in seconds).

Min Lq Mean Median Uq Max #eval

RAM (caviarma) 40.22 41.0 42.3 41.2 43.6 47.5 30

RAM (caviarma) - parallel 9.98 10.6 10.9 10.9 11.2 12.2 30

implementation appears to be the RAM algorithm in the caviarma package, we now time the

estimation of the T-CAViaR model using a batch of size 3× 104 with 3 function evaluations.

With this setup, we can obtain an estimate θ̂ in less than one minute (without parallelization),

which would allow us to get a forecast before a new observation becomes available. Using

parallel::mclapply, the average time is around 10 seconds as seen in Table 3.5.

36

0 2k 4k 6k 8k 10k

−0.5

0

0.5

1

 Chains θ 1 - 1

θ 2 - 1

θ 3 - 1

θ 4 - 1

θ 5 - 1

θ 6 - 1

θ 1 - 2

θ 2 - 2

θ 3 - 2

θ 4 - 2

θ 5 - 2

θ 6 - 2

θ 1 - 3

θ 2 - 3

θ 3 - 3

θ 4 - 3

θ 5 - 3

θ 6 - 3

θ 1 - 4

θ 2 - 4

θ 3 - 4

θ 4 - 4

θ 5 - 4

θ 6 - 4

θ 1 - 5

θ 2 - 5

θ 3 - 5

θ 4 - 5

θ 5 - 5

θ 6 - 5

θ 1 - 6

θ 2 - 6

θ 3 - 6

θ 4 - 6

θ 5 - 6

θ 6 - 6

θ 1 - True

θ 2 - True

θ 3 - True

θ 4 - True

θ 5 - True

θ 6 - True

θ

Figure 3.8: Mixing of the RAM algorithm - 6 paths starting from the true values.

37

Chapter 4

Application

Here we choose the Robust Adaptive MCMC (Vihola, 2012) algorithm as default method when

estimating the parameters of the CAViaR family of models. The parameter vector estimate

θ̂t is subsequently used to get a forecast of quantile qα at time t+1. In this section we explain

how to set up a computing architecture to serve and manage access to a web application

available. This application obtains real time prices from a cryptocurrency exchange through

a Websocket API and uses the shiny package (Chang et al., 2021) to visualize this data

dynamically on the web. The same web application uses a standard HTTP API to estimate

the VaRα of multiple countries using ETF data as a proxy.

4.1 Data

4.1.1 High frequency

The WebSocket protocol is a modern technology that allows two-way communication between

a server and a client. It is designed to address important issues that arise when abusing the

HTTP protocol with multiple calls, required when working with high frequency data. Instead

of making a different call every k seconds, the server will notify the client whenever new data

arrives through the same communication channel.

We will estimate the parameters of the T-CAViaR model (2.19) using an input vector y
corresponding to the daily returns of the Bitcoin/USD crypto currency pair. However, our

forecast quantile q̂α will not be available in real time since it takes time to get our estimate

vector θ̂. The Bitstamp API offers a maximum of 1000 data points of historical data through

an HTTP API alongside the above-mentioned real time WebSocket API. Historical data is

obtained at a given frequency k, the highest frequency available being 60 seconds. We will

hence start by timing the estimation of θ̂ using the microbenchmark package (Mersmann,

2019).

The specific alphanumeric pattern of the unique identifiers (symbols or tickers) depend on

38

https://www.bitstamp.net/websocket/v2/
https://finance.yahoo.com/quote/BTC%3DF/history?period1=1513555200&period2=1609200000&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6202
https://www.bitstamp.net/api/

Table 4.1: The input data structure.

Length Class Mode

high 1000 -none- character

timestamp 1000 -none- character

volume 1000 -none- character

low 1000 -none- character

close 1000 -none- character

open 1000 -none- character

the data source. For instance, the cryptocurrency database follows a currency1currency2

pattern while the ETF database uses additional symbols such as ^ = . depending on the

asset class. It’s important to be aware of these differences when working with multiple data

sources since these unique identifiers are usually unique and far from standardized.

Historical OHLC data is received in JSON format through the

https://www.bitstamp.net/api/v2/ endpoint. The following R code downloads a

JSON file with the latest 1000 hourly prices for btcusd:

api_call <- sprintf(

"https://www.bitstamp.net/api/v2/ohlc/%s/?step=%s&limit=%s",

"btcusd", 86400, 1000

)

out <- jsonlite::fromJSON(api_call)$data

Where the JSON data out has been parsed into an R list of 2 elements: pair (BTC/USD)

and ohlc (the prices).

This data gathering step has been summarized into the get_price_hist function, which

returns by default the same list of two elements. We can then compute the log-returns vector

y which will be passed as first argument to caviar_methods when estimating the parameters

of the model.

4.1.2 Low frequency

The HTTP protocol uses a different TCP connection every time a GET request is made to the

server. The highest frequency available through the Yahoo! Finance endpoint is one day.

Yahoo! Finance data can be easily obtained through their website. Alternatively, the following

R code downloads the CSV file of daily data for BTC=F:

39

https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc793

download_link <- paste0(

"https://query1.finance.yahoo.com/v7/finance/download/",

sprintf("BTC=F?period1=1513555200&period2=%s&", as.integer(Sys.time())),

"interval=1d&events=history&includeAdjustedClose=true"

)

btc_futures <- read.csv(download_link)

summary.default(btc_futures)

Length Class Mode

Date 970 -none- character

Open 970 -none- character

High 970 -none- character

Low 970 -none- character

Close 970 -none- character

Adj.Close 970 -none- character

Volume 970 -none- character

The resulting data.frame has a total of 970 rows and 7 columns as of 2021-10-25 23:09:54.

However, several rows need to be ignored since they include no data but a null message. 1

idx <- which(btc_futures$Close == "null")

btc_futures <- btc_futures[-idx,]

dim(btc_futures)

[1] 962 7

After removing the lines with null data, we end up with a total of 962 observations.

Figure 4.1 uses a plotly candlestick chart (Sievert et al., 2021) to better help us visualize

the data.

The output of applying the summary function to the btc_spot dataset is shown in Table

4.2. Notice that we first convert the numeric data from character type by applying the

as.numeric function to each column of btc_spot, excluding the timestamp column.

We can also collect additional information such as the mean and quantiles for different values

of α ∈ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, where the quantile at level α = 0.5 corresponds to the median

of a given vector such as btc_spot$close. 2 The mean value of this vector is 2.031 × 104

while the different quantile levels can be found in Table 4.3.
1These observations correspond to the days where the futures market is closed.
2The original data is still saved as character.

40

2018 2019 2020 2021
0

10k

20k

30k

40k

50k

60k

70k
btcusd
BTC=F

BTC/USD

Date

Pr
ic
e

Figure 4.1: Spot and futures prices of the BTC/USD currency pair.

Table 4.2: Summary of the BTC/USD spot prices.

high volume low close open

Min. : 3383 Min. : 162 Min. : 3329 Min. : 3359 Min. : 3358

1st Qu.: 8411 1st Qu.: 3700 1st Qu.: 8007 1st Qu.: 8212 1st Qu.: 8206

Median :10575 Median : 5955 Median :10083 Median :10366 Median :10363

Mean :20868 Mean : 7511 Mean :19564 Mean :20306 Mean :20247

3rd Qu.:35813 3rd Qu.: 9300 3rd Qu.:33188 3rd Qu.:34636 3rd Qu.:34532

Max. :67016 Max. :58513 Max. :63529 Max. :65990 Max. :66028

Table 4.3: Closing price quantiles, BTC/USD spot.

0% 10% 20% 30% 40% 50%

3359 5683 7743 8770 9493 10366

41

0 20k 40k 60k

0

100

200

300

400 BTC/USD Spot close
BTC/USD - α: 0.1
BTC/USD - α: 0.2
BTC/USD - α: 0.3
BTC/USD - α: 0.4
BTC/USD - α: 0.5
BTC/USD - α: 0.6
BTC/USD - α: 0.7
BTC/USD - α: 0.8
BTC/USD - α: 0.9

Figure 4.2: Histogram of BTC/USD price quantiles.

This information can also be represented graphically using a plotly histogram as shown in

Figure 4.2.

btc_close <- as.numeric(btc_spot$close)

close_hist <- plotly::plot_ly(

x = btc_close,type = "histogram", name = "BTC/USD Spot close"

) %>%

add_segments(

x = quantile(btc_close, probs = seq(0.1, 0.9, 0.1)),

xend = quantile(btc_close, probs = seq(0.1, 0.9, 0.1)),

y = -10, yend=10, name = paste("BTC/USD - \U03B1:", seq(0.1, 0.9, 0.1)),

line = list(width = 1)

)

close_hist

And we can also compare this histogram to the corresponding Close price of the btc_futures

table as seen in Figure 4.3.

fig <- plotly::plot_ly(alpha = 0.5) %>%

add_histogram(x = as.numeric(btc_spot$close),

name = "BTC/USD Spot") %>%

add_histogram(x = as.numeric(btc_futures$Close),

name = "BTC/USD Futures") %>%

42

0 20k 40k 60k
0

100

200

300

400

BTC/USD Spot
BTC/USD Futures

Figure 4.3: Histogram of BTC/USD spot prices overlaying futures prices.

layout(barmode = "overlay")

fig

4.1.3 Modelling

For this step we start by computing the log-returns shown in Figure 4.4 as follows:

out <- get_price_hist("btcusd", crypto = T)

y <- diff(log(as.numeric(out$ohlc$CLOSE)))

After which we pass y to the MCMC sampler:

out <- caviarma::caviar(y, nsim = 1e5)

This step is the bottleneck of the data analysis since it must be repeated multiple times as

explained in the Simulation Study section.

4.1.4 Forecasting

After getting our estimate θ̂t, we obtain our forecast for t = t + 1 using Equations (2.15) to

(2.19):

43

Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

BTC/USD

Date

R
et

ur
n

(%
)

Figure 4.4: Log-returns for the BTC/USD pair, prices (close) from Yahoo! Finance.

Table 4.4: DQ Test statistic for different CAViaR models (GAS package).

Statistic P-value

Symmetric Absolute Value 2.74 0.908

Asymmetric Slope 2.10 0.954

Adaptive 26.66 0.000

T-CAViaR 4.58 0.711

quantile_forecast <- caviarma::get_forecast(y, out)

Figure 4.5 shows sample VaR forecasts obtained using different CAViaR models. We also

include the corresponding tGARCH and sGARCH forecasts for reference (Ardia et al., 2019a). 3

And finally, we show in Table 4.4 the results from the VaR backtest obtained through the

GAS::BacktestVaR() function.

4.2 Web app

We make use of the shiny and shinyMobile R packages to build a progressive web app4

(PWA) that allows a user to gather, analyze and visualize the data introduced in the Data

section using the models and methods studied in the Forecasting Methods section. To run

3The tGARCH and sGARCH estimates are obtained using the MSGARCH::FitMCMC() function.
4This package uses Framwework7 behind the scenes.

44

https://framework7.io/docs/introduction.html

2020 2021 2022
−0.2

−0.15

−0.1

−0.05

0

Returns CAViaR: Symmetric Absolute Value

α = 0.05 , Symmetric Absolute Value
 Forecast for 2021-10-27

CAViaR: Asymmetric Slope

α = 0.05 , Asymmetric Slope
 Forecast for 2021-10-27

CAViaR: GARCH

α = 0.05 , GARCH
 Forecast for 2021-10-27

CAViaR: Adaptive

α = 0.05 , Adaptive
 Forecast for 2021-10-27

CAViaR: T-CAViaR

α = 0.05 , T-CAViaR
 Forecast for 2021-10-27

α = 0.05 , sGARCH
 Forecast for 2021-10-27

α = 0.05 , tGARCH
 Forecast for 2021-10-27

Multiple VaR Forecasts, one step ahead.

R
et

ur
n

(%
)

Last update: 2021-10-25 20:00:00 - Quantile: 0.05 - Chain size: 100000

Figure 4.5: VaR (0.05) forecasts using different models.

45

this application locally, one must first install the simulr package (Chaparro Sepulveda, 2021)

and then run the app:

remotes::install_gitlab("cacsfre/simulr")

simulr::run_simulr()

4.2.1 Reactivity

R is a powerful data-centred programming language offering a mathematically intuitive inter-

active environment which makes data analysis a joyful experience. The shiny package offers

an intuitive framework for developing web applications using the R programming language.

A shiny application seamlessly connect user interface (UI) input to the back end running R.

This makes it straightforward to create a UI to allow users of our code to interact with it

without requiring any programming.

This relationship between the input received from the browser (the client) and the out-

put produced by the server is summarized in Figure 4.6 shiny handles all the required

css/html/javascript5 to create a communication channel between the browser and the

server through R.

Shiny offers a reactive programming model which makes it easy to make use of an R function

whenever the input object changes. The logic behind each element rendered in the UI is

summarized using shiny modules. For instance, the code below6 creates a plotly map (the

UI element) whenever input$update_map changes, i.e., it’s clicked.

map_cardUI <- function(id) {

uiOutput(NS(id, "map_card"))

}

map_cardServer <- function(id) {

moduleServer(id, function(input, output, session) {

values <- shiny::reactiveValues(map_data = NULL)

output$map_plot <- plotly::renderPlotly(get_map(values$map_data))

observeEvent(input$update_map, {values$map_data <- get_map_data()})

output$map_card <- renderUI({

shinyMobile::f7Card(

title = shiny::actionButton("update_map"),

plotly::plotlyOutput("map_plot")

5Still, you are likely to write some css/html/javascript in order to customize your shiny apps.
6This is a shortened version of the simulr::map_cardUI() and simulr::map_cardServer() functions.

46

https://en.wikipedia.org/wiki/Reactive_programming
https://shiny.rstudio.com/articles/modules.html

input Reactive values output

Figure 4.6: Relationship between user input, server output and reactive values.

)

})

})

}

In the example above, the server recreates the output$map_plot session object

whenever the user clicks on input$update_map. This relationship is due to the

observeEvent(input$update_map, {values$map_data <- get_map_data()}) expression,

which invalidates the reactive relationship between values$map_data and output$map_plot

whenever input$update_map is clicked by the user.

4.2.2 Deployment

Deploying a shiny application can be pretty simple using the https://www.shinyapps.io/

service by RStudio. This works fine for demos consuming limited resources. However, it

requires an upgrade once we need to handle multiple users or greater computing resources.

The two typical approaches to scale a shiny app in an enterprise context are Shiny Server

and ShinyProxy, where shinyproxy7 tries to fill the gaps of the open-source version of

shiny-server relying exclusively on the open-source shiny package. Another advantage

of ShinyProxy is its use of docker, offering each user its own independent shiny app environ-

ment and R process. This isolation obtained through docker containers is important both

for security and performance reasons. This architecture is outlined in Figure 4.7.

Compared to the open-source version of shiny-server in Figure 4.8.

7ShinyProxy is an open-source technology built with java, its source code is available at
https://github.com/openanalytics/shinyproxy/tree/master/src/main/java.

47

https://shiny.rstudio.com/articles/reactivity-overview.html
https://docs.rstudio.com/shiny-server/
https://www.shinyproxy.io/
https://docs.docker.com/get-started/

simulr.ca:8080

localhost:3838

Image 1 Image 2 Image 3 Image 4 Image 5

User 1 User 2 User 3 User 4 User 5

Figure 4.7: Outline of the shinyproxy architecture.

simulr.ca:8080

localhost:3838

shiny-server

User 1 User 2 User 3 User 4 User 5

Figure 4.8: Outline of the open-source shiny-server architecture.

48

Conclusion

We tested several adaptive MCMC algorithms to estimate the parameters of the CAViaR

family of models. We found that the Robust Adaptive MCMC algorithm (Vihola, 2012)

is best suited to explore the target distribution in the case of a heavy-tailed return vector.

Given the time taken to run the Monte Carlo simulations, we used C++ to speed up key

loops which made it possible to get a forecast in under a minute using a standard personal

computer . We were also able to build and deploy a web application using exlusively the R

programming language to gather, analyze and visualize real time financial data. Currently,

the app depends entirely on its single R process available through shiny, which has serious

limitations whenever the server receives multiple messages within a second, which can be

pretty intense when markets drop. Since there is only one R process available to treat this

incoming data, analyzing it and generating output, the full application can freeze whenever

market activity is too high. This issue can currently be handled simply by disabling the

WebSocket updates and relying exclusively on HTTP requests happening once per minute

instead. However, real time data can be critical for decision-making in which case a possible

solution is to delegate this task to the client through Javascript or using a multithreaded web

framework to handle the incoming data.

An important portfolio management element has been left aside throughout this document,

i.e., the correlation between asset returns. The factor copula models introduced by Krupskii

and Joe (2015) offer an intuitive way to model the correlation structure among traditional

financial markets and cryptocurrency returns. Another important issue that has been left off

this work concerns ensuring non-crossing quantiles as described by Liu and Luger (2017).

Cryptocurrency markets are new and growing exponentially. It is difficult to predict which

cryptocurrencies will survive, but it seems like they will all be using some form of blockchain

technology for the foreseeable future. This can either mean that organizations will be using

this newer and better technology as a replacement to old technology while still relying heavily

on human labour or that this newer and better technology will play an important role in the

automation of modern labour.

49

Bibliography

International Energy Agency. Global energy review. 2020. URL https://www.iea.org/

reports/global-energy-review-2020/renewables.

David Ardia, Keven Bluteau, Kris Boudt, Leopoldo Catania, and Denis-Alexandre Trottier.

Markov-Switching GARCH Models in R: The MSGARCH Package. Journal of Statistical

Software, 91(4):138, 2019a. doi: 10.18637/jss.v091.i04. URL https://www.jstatsoft.

org/index.php/jss/article/view/v091i04.

David Ardia, Keven Bluteau, and Maxime Rüede. Regime changes in Bitcoin GARCH

volatility dynamics. Finance Research Letters, 29:266–271, 2019b. ISSN 1544-6123.

doi: https://doi.org/10.1016/j.frl.2018.08.009. URL https://www.sciencedirect.com/

science/article/pii/S1544612318303970.

David Ardia, Keven Bluteau, Leopoldo Catania, and Denis-Alexandre Trottier. MSGARCH:

Markov-Switching GARCH Models, 2020. URL https://github.com/keblu/MSGARCH. R

package version 2.42.

Yves F Atchadé and Jeffrey S Rosenthal. On adaptive Markov Chain Monte Carlo algorithms.

Bernoulli, 11(5):815–828, 2005.

Dirk G. Baur and Thomas K. McDermott. Is gold a safe haven? International evi-

dence. Journal of Banking & Finance, 34(8):1886–1898, 2010. ISSN 0378-4266. doi:

https://doi.org/10.1016/j.jbankfin.2009.12.008. URL https://www.sciencedirect.com/

science/article/pii/S0378426609003343. New Contributions to Retail Payments: Con-

ference at Norges Bank (Central Bank of Norway) 1415 November 2008.

Claus Bendtsen. pso: Particle Swarm Optimization, 2012. URL https://CRAN.R-project.

org/package=pso. R package version 1.0.3.

Bloomberg. Argentina’s biggest futures market plans to join the bitcoin

party. 2017. URL https://www.bloomberg.com/news/articles/2017-11-02/

argentina-s-biggest-futures-market-plans-to-join-bitcoin-party.

50

https://www.iea.org/reports/global-energy-review-2020/renewables
https://www.iea.org/reports/global-energy-review-2020/renewables
https://www.jstatsoft.org/index.php/jss/article/view/v091i04
https://www.jstatsoft.org/index.php/jss/article/view/v091i04
https://www.sciencedirect.com/science/article/pii/S1544612318303970
https://www.sciencedirect.com/science/article/pii/S1544612318303970
https://github.com/keblu/MSGARCH
https://www.sciencedirect.com/science/article/pii/S0378426609003343
https://www.sciencedirect.com/science/article/pii/S0378426609003343
https://CRAN.R-project.org/package=pso
https://CRAN.R-project.org/package=pso
https://www.bloomberg.com/news/articles/2017-11-02/argentina-s-biggest-futures-market-plans-to-join-bitcoin-party
https://www.bloomberg.com/news/articles/2017-11-02/argentina-s-biggest-futures-market-plans-to-join-bitcoin-party

Bloomberg. Bitcoin surges to highest since july 2019 after paypal embrace.

2020-10-21. URL https://www.bloomberg.com/news/articles/2020-10-21/

bitcoin-on-the-brink-of-fresh-year-high-following-paypal-embrace.

Bloomberg. Crypto mining booms on cheap, subsidized energy in argentina.

2021a. URL https://www.bloomberg.com/news/articles/2021-05-31/

crypto-mining-booms-on-cheap-subsidized-energy-in-argentina.

Bloomberg. China widens ban on crypto transactions; bitcoin tumbles.

2021b. URL https://www.bloomberg.com/news/articles/2021-09-24/

china-deems-all-crypto-related-transactions-illegal-in-crackdown.

Bloomberg. Tesla bets on bitcoin in blue-chip boost to cryptocurrency.

2021c. URL https://www.bloomberg.com/news/articles/2021-02-08/

tesla-bets-1-5-billion-on-bitcoin-in-new-policy-crypto-surges.

Bloomberg. Even garbage is using blockchain now. 2021d. URL https://www.bloomberg.

com/news/articles/2021-03-18/even-garbage-is-using-blockchain-now.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics, 31(3):307–327, 1986. ISSN 0304-4076. doi: https://doi.org/10.1016/

0304-4076(86)90063-1. URL https://www.sciencedirect.com/science/article/pii/

0304407686900631.

Richard P Brent. Some efficient algorithms for solving systems of nonlinear equations. SIAM

Journal on Numerical Analysis, 10(2):327–344, 1973.

Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application

platform. URL: https://ethereum.org/en/whitepaper, 2013.

Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff

Allen, Jonathan McPherson, Alan Dipert, and Barbara Borges. Shiny: Web Application

Framework for R, 2021. URL https://shiny.rstudio.com/. R package version 1.7.1.

Carlos A. Chaparro Sepulveda. caviarma: Estimation of the CAViaR model using MCMC

algorithms, 2019. https://gitlab.com/cacsfre/caviarma.

Carlos A. Chaparro Sepulveda. simulr: A shiny application for the analysis of real time

financial data, 2021. https://gitlab.com/cacsfre/simulr.

Cathy WS Chen and Mike KP So. On a threshold heteroscedastic model. International

Journal of Forecasting, 22(1):73–89, 2006.

Maurice Clerc. Particle Swarm Optimization. 2010. ISBN 9781905209040. doi:

10.1002/9780470612163. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

9780470612163.

51

https://www.bloomberg.com/news/articles/2020-10-21/bitcoin-on-the-brink-of-fresh-year-high-following-paypal-embrace
https://www.bloomberg.com/news/articles/2020-10-21/bitcoin-on-the-brink-of-fresh-year-high-following-paypal-embrace
https://www.bloomberg.com/news/articles/2021-05-31/crypto-mining-booms-on-cheap-subsidized-energy-in-argentina
https://www.bloomberg.com/news/articles/2021-05-31/crypto-mining-booms-on-cheap-subsidized-energy-in-argentina
https://www.bloomberg.com/news/articles/2021-09-24/china-deems-all-crypto-related-transactions-illegal-in-crackdown
https://www.bloomberg.com/news/articles/2021-09-24/china-deems-all-crypto-related-transactions-illegal-in-crackdown
https://www.bloomberg.com/news/articles/2021-02-08/tesla-bets-1-5-billion-on-bitcoin-in-new-policy-crypto-surges
https://www.bloomberg.com/news/articles/2021-02-08/tesla-bets-1-5-billion-on-bitcoin-in-new-policy-crypto-surges
https://www.bloomberg.com/news/articles/2021-03-18/even-garbage-is-using-blockchain-now
https://www.bloomberg.com/news/articles/2021-03-18/even-garbage-is-using-blockchain-now
https://www.sciencedirect.com/science/article/pii/0304407686900631
https://www.sciencedirect.com/science/article/pii/0304407686900631
https://shiny.rstudio.com/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470612163
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470612163

Robert E Dorsey and Walter J Mayer. Genetic algorithms for estimation problems with

multiple optima, nondifferentiability, and other irregular features. Journal of Business &

Economic Statistics, 13(1):53–66, 1995.

Bradley Efron. Why isn’t everyone a Bayesian? The American Statistician, 40(1):1–5, 1986.

Robert F Engle and Simone Manganelli. CAViaR: Conditional autoregressive Value at Risk

by regression quantiles. Journal of Business & Economic Statistics, 22(4):367–381, 2004.

Andrew Gelman, Walter R Gilks, and Gareth O Roberts. Weak convergence and optimal

scaling of random walk metropolis algorithms. The Annals of Applied Probability, 7(1):

110–120, 1997.

Richard H Gerlach, Cathy WS Chen, and Nancy YC Chan. Bayesian time-varying quan-

tile forecasting for Value at Risk in financial markets. Journal of Business & Economic

Statistics, 29(4):481–492, 2011.

Pavel Krupskii and Harry Joe. Structured factor copula models: Theory, inference and com-

putation. Journal of Multivariate Analysis, 138:53–73, 2015.

Nikolaos A Kyriazis. A survey on empirical findings about spillovers in cryptocurrency mar-

kets. Journal of Risk and Financial Management, 12(4):170, 2019.

Xiaochun Liu and Richard Luger. Markov-switching quantile autoregression: a gibbs sampling

approach. Studies in Nonlinear Dynamics & Econometrics, 22(2), 2017.

Karl Marx. Das Kapital: kritik der politischen ökonomie, volume 1. O. Meissner, 1890.

Ralph C Merkle. Protocols for public key cryptosystems. In 1980 IEEE Symposium on

Security and Privacy, pages 122–122. IEEE, 1980.

Olaf Mersmann. Microbenchmark: Accurate Timing Functions, 2019. URL https://github.

com/joshuaulrich/microbenchmark/. R package version 1.4-7.

Nicholas Metropolis and Stanislaw Ulam. The Monte Carlo method. Journal of the American

Statistical Association, 44(247):335–341, 1949.

Léopold Migeotte and Janet Lloyd. The Economy of the Greek Cities: From the Archaic

Period to the Early Roman Empire. University of California Press, 1 edition, 2009. ISBN

9780520253650. URL http://www.jstor.org/stable/10.1525/j.ctt1pn6p2.

J. P. Morgan and Reuters. Riskmetrics. Technical Document Fourth Edition, J. P. Mor-

gan and Reuters, New York, 1996. URL https://www.msci.com/documents/10199/

5915b101-4206-4ba0-aee2-3449d5c7e95a.

52

https://github.com/joshuaulrich/microbenchmark/
https://github.com/joshuaulrich/microbenchmark/
http://www.jstor.org/stable/10.1525/j.ctt1pn6p2
https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. URL:

https://bitcoin.org/bitcoin.pdf, 2008.

Jeroen Ooms. Openssl: Toolkit for Encryption, Signatures and Certificates Based on OpenSSL,

2021. URL https://github.com/jeroen/openssl. R package version 1.4.5.

PayPal. Paypal cryptocurrency terms and conditions. 2021. URL https://www.paypal.

com/us/webapps/mpp/ua/cryptocurrencies-tnc.

Martyn Plummer, Nicky Best, Kate Cowles, Karen Vines, Deepayan Sarkar, Douglas Bates,

Russell Almond, and Arni Magnusson. Coda: Output Analysis and Diagnostics for MCMC,

2020. URL https://CRAN.R-project.org/package=coda. R package version 0.19-4.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org/.

Christian Robert. The Bayesian choice: From decision-theoretic foundations to computational

implementation. Springer Science & Business Media, 2007.

Christian P. Robert and George Casella. Introducing Monte Carlo Methods with R (Use R).

Springer-Verlag, Berlin, Heidelberg, 1st edition, 2009. ISBN 1441915753.

Gareth O. Roberts and Jeffrey S. Rosenthal. Examples of adaptive MCMC. Journal of

Computational and Graphical Statistics, 18(2):349–367, 2009. doi: 10.1198/jcgs.2009.06134.

URL https://doi.org/10.1198/jcgs.2009.06134.

David Ruppert and David S Matteson. Statistics and Data Analysis for Financial Engineering,

volume 13. Springer-Verlag, New York, 2011.

Conrad Sanderson and Ryan Curtin. Armadillo: A template-based C++ library for linear

algebra. Journal of Open Source Software, 1(2):26, 2016.

Andreas Scheidegger. adaptMCMC: Implementation of a Generic Adaptive Monte Carlo

Markov Chain Sampler, 2021. URL https://github.com/scheidan/adaptMCMC. R pack-

age version 1.4.

Luca Scrucca. GA: Genetic Algorithms, 2021. URL https://luca-scr.github.io/GA/. R

package version 3.2.1.

Robert J Serfling. Multivariate symmetry and asymmetry. Wiley StatsRef: Statistics Refer-

ence Online, 2014.

Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne

Corvellec, and Pedro Despouy. plotly: Create Interactive Web Graphics via plotly.js, 2021.

https://plotly-r.com, https://github.com/plotly/plotly.R.

53

https://github.com/jeroen/openssl
https://www.paypal.com/us/webapps/mpp/ua/cryptocurrencies-tnc
https://www.paypal.com/us/webapps/mpp/ua/cryptocurrencies-tnc
https://CRAN.R-project.org/package=coda
https://www.R-project.org/
https://doi.org/10.1198/jcgs.2009.06134
https://github.com/scheidan/adaptMCMC
https://luca-scr.github.io/GA/

Statista. Number of crypto coins since 2013. 2021. URL https://www.statista.com/

statistics/863917/number-crypto-coins-tokens.

Stavros Stavroyiannis. Value at Risk and related measures for the bitcoin. Journal of Risk Fi-

nance, 19(2):127–136, 2018. URL https://EconPapers.repec.org/RePEc:eme:jrfpps:

jrf-07-2017-0115.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 4th

edition, 2013. ISBN 0321563840.

Matti Vihola. Robust adaptive metropolis algorithm with coerced acceptance rate. Statistics

and Computing, 22(5):997–1008, 2012.

Gang-Jin Wang, Chi Xie, Danyan Wen, and Longfeng Zhao. When bitcoin meets economic

policy uncertainty (EPU): Measuring risk spillover effect from EPU to bitcoin. Finance Re-

search Letters, 31(C), 2019. URL https://EconPapers.repec.org/RePEc:eee:finlet:

v:31:y:2019:i:c:s1544612318305749.

Halbert White, Tae-Hwan Kim, and Simone Manganelli. VAR for VaR: Measuring tail de-

pendence using multivariate regression quantiles. Journal of Econometrics, 187(1):169–188,

2015.

Jinyoung Yang. atmcmc: Automatically Tuned Markov Chain Monte Carlo, 2014. URL

https://CRAN.R-project.org/package=atmcmc. R package version 1.0.

Jinyoung Yang and Jeffrey S Rosenthal. Automatically tuned general-purpose MCMC via

new adaptive diagnostics. Computational Statistics, 32(1):315–348, 2017.

Keming Yu and Rana A. Moyeed. Bayesian quantile regression. Statistics & Proba-

bility Letters, 54(4):437–447, 2001. ISSN 0167-7152. doi: https://doi.org/10.1016/

S0167-7152(01)00124-9. URL https://www.sciencedirect.com/science/article/pii/

S0167715201001249.

54

https://www.statista.com/statistics/863917/number-crypto-coins-tokens
https://www.statista.com/statistics/863917/number-crypto-coins-tokens
https://EconPapers.repec.org/RePEc:eme:jrfpps:jrf-07-2017-0115
https://EconPapers.repec.org/RePEc:eme:jrfpps:jrf-07-2017-0115
https://EconPapers.repec.org/RePEc:eee:finlet:v:31:y:2019:i:c:s1544612318305749
https://EconPapers.repec.org/RePEc:eee:finlet:v:31:y:2019:i:c:s1544612318305749
https://CRAN.R-project.org/package=atmcmc
https://www.sciencedirect.com/science/article/pii/S0167715201001249
https://www.sciencedirect.com/science/article/pii/S0167715201001249

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Cryptocurrencies
	Bitcoin
	Blockchain
	Proof of work
	Market value

	Forecasting Methods
	Quantile Models
	Maximum Likelihood Estimation
	Markov Chain Monte Carlo
	Adaptive MCMC Algorithms

	Simulation Study
	Data generating process
	Sample MCMC path
	Convergence and mixing speed
	Simulation results
	Time complexity

	Application
	Data
	Web app

	Conclusion
	Bibliography

